Как определить является ли число простым или составным?

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Как определить является ли число простым или составным?». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


О том, что множество простых является бесконечностью, писал в книге “Начала” древнегреческий ученый Евклид. Он говорил так: “Давайте на минуту представим, что простые числа имеют предел. Тогда давайте перемножим их друг с другом, а к произведению прибавим единицу. Число, полученное в результате этих простых действий, не может делиться ни на одно из ряда простых чисел, потому что в остатке всегда будет единица. А это значит, что существует какое-то другое число, которое еще не включено в список простых чисел. Следовательно, наше допущение не верно, и это множество не может иметь предела. Помимо доказательства Евклида, существует более современная формула, данная швейцарским математиком восемнадцатого века Леонардом Эйлером. Согласно ему, сумма, обратная сумме первых n чисел растет неограниченно с ростом числа n. А вот формула теоремы относительно распределения простых чисел: (n) растёт, как n/ln (n).

Задачи на простые и составные числа

1. Известно, что р, р + 10, р + 14 – простые числа. Найдите число р.

  1. 2. Докажите, что число
  2. а) 210 + 512;
  3. б) n4 + 64;
  4. в) 4545 + 5454;
  5. является составным.

3. Найдите все простые р для которых число р2 + 14 так же будет простым числом.

4. Докажите, что уравнение х2 + х + 1 = р·у имеет решение в целых числах (х, у) для бесконечного числа простых р.

5. Введём обозначение для суммы первых n простых чисел через Sn:

Sn = 2 + 3 + 5 + . . . + рn.

Докажите, что между числами Sn и Sn+1 всегда существует число, являющееся полным квадратом.

На этом уроке мы познакомимся с двумя видами чисел. Они будут различаться количеством делителей.

Также узнаем, как можно разложить составное число на простые числа, изучим основную теорему арифметики и увидим решето Эратосфена.

Давайте же начнём!

  • Если мы попытаемся разделить число 11 на какие-нибудь числа без остатка, то у нас получится это сделать, только если мы будем делить на 1 или на 11.
  • Получается, что число 11 имеет только два делителя: 1 и 11.
  • Если мы поступим так же с числами 9 и 18, то узнаем, что у числа 9 три делителя: 1, 3 и 9, а число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18

Первое число, у которого всего два делителя, — это простое число. А вот такие числа, как 9 и 18, называют составными числами.

Натуральное число простое, если оно имеет делителями только единицу и само себя.

Если натуральное число имеет больше двух делителей, то оно называется составным.

Есть число, которое не относится ни к первым, ни ко вторым. Это число 1. Оно имеет всего один делитель — само это число.

Таким образом, числа, которые мы используем при счете, в итоге можно разделить на три разные группы по количеству делителей:

  • простые имеют всегда пару делителей: единицу и само себя, например: 2, 3, 5, 7, 11, 17, 19, 23 и т.д.
  • составные имеют всегда три или больше делителей, например: 4, 6, 8,10,15, 22 и т.д.
  • единица (1) со своим единственным делителем

Пример 1

Даны числа: 1, 7, 10, 12, 13, 24. Найдите все делители для каждого из чисел. Выпишите числа, имеющие:

  1. А) один делитель
  2. Б) два делителя
  3. В) больше двух делителей
  4. Решение:
  5. Число 1 имеет один делитель: 1
  6. Число 7 имеет два делителя: 1, 7
  7. Число 10 имеет четыре делителя: 1, 2, 5, 10
  8. Число 12 имеет шесть делителей: 1, 2, 3, 4, 6, 12
  9. Число 13 имеет два делителя: 1, 13
  10. Число 24 имеет восемь делителей: 1, 2, 3, 4, 6, 8, 12, 24
  11. Ответ:
  12. А) один делитель- 1
  13. Б) два делителя- 7, 13
  14. В) больше двух делителей- 10, 12, 24
  15. Таким образом, числа 7 и 13 являются простыми, потому что имеют по два делителя.
  16. Числа 10, 12, 24 являются составными, потому что имеют больше двух делителей.
  17. Пример 2

Даны числа: 2, 4, 17, 21, 28, 30, 42, 55, 127. Какие из них простые, а какие составные?

  • Найдите все делители для составных чисел.
  • Решение:
  • Простые: 2, 17, 127
  • Составные: 4, 21, 28, 30, 42, 55
  • Число 4 имеет три делителя: 1, 2, 4
  • Число 21 имеет четыре делителя: 1, 3, 7, 21
  • Число 28 имеет шесть делителей: 1, 2, 4, 7, 14, 28
  • Число 30 имеет восемь делителей: 1, 2, 3, 5, 6, 10, 15, 30
  • Число 42 имеет восемь делителей: 1, 2, 3, 6, 7, 14, 21, 42
  • Число 55 имеет четыре делителя: 1, 5, 11, 55

Простое число – это положительное натуральное число, которое имеет только два положительных натуральных делителя: единицу и самого себя.

Противоположностью простых чисел являются составные числа. Составное число – это положительное натуральное число, которое имеет, по крайней мере, один положительный делитель, отличный от одного или самого себя.

Взаимно простые числа – числа A и B, не имеющие никаких общих делителей, за исключением единицы.

  1. Число 2 является простым числом, т.к.

    имеет всего два делителя – 1 и 2:

  2. Число 15 не является простым числом, потому имеет делители – 1, 3, 5, 15:
    • 15/1 = 15
    • 15/3 = 5
    • 15/5 = 3
    • 15/15 = 1
  3. Число 13 является простым числом, т.к.

    имеет только два делителя – 1 и 13:

  4. Числа 2 и 5 являются взаимно простыми, т.к. имеют только один общий делитель – число 1:
    1. 2/1 = 2
    2. 2/2 = 1
    3. 5/1 = 5
    4. 5/5 = 1

Интересная информация

В глубокой древности началось изучение так называемых совершенных и дружественных чисел.

Некоторые из учёных пытались выражать на языке чисел всё, что наблюдали вокруг себя. Даже нематематические понятия дружбы, справедливости и совершенства переводились на язык чисел.

Если число равно сумме всех возможных делителей без него самого, то оно называется совершенным.

Например, самыми элементарными из них будут 6 и 28:

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

Если сумма всех возможных делителей числа (кроме него самого) равна второму числу, а сумма всех возможных делителей второго (без него самого) равна первому, то это уже дружественные числа.

Если верить историческим фактам, математик Пифагор считал, что его другом может быть «тот, кто является моим вторым Я, как числа 220 и 284»

Список делителей для 220: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, сумма делителей равна 284

Список делителей для 284: 1, 2, 4, 71 и 142, сумма делителей равна 220.

Пару дружественных чисел 1184 и 1210 обнаружил в 1866г. итальянский школьник Никколо Паганини, полный тёзка великого скрипача.

Любопытно, что эту пару «проглядели» все великие математики.

Какие числа называют составными в математике

Такие числа, которые используют при счете объектов и предметов, называют натуральными.

Натуральные числа бывают простыми и составными.

Читайте также:  Сроки сдачи отчетности в 2023 и 2022 году

Если у числа есть только два делителя — единица и само число — то его называют простым. Самое маленькое простое число — это 2.

Например, к простым относят также 3, 5 и 7.

У 3 есть только два делителя: 1 и 3.

Составные числа являются натуральными и имеют больше двух делителей.

Например, 125 делится на 1, 5, 25, 125. Это составное число.

Единица не относится ни к простым, ни к составным натуральным числам.

Делителем числа называют такое число, при делении на которое полученный результат является целым (не имеет остатка).

Нельзя назвать самое большое составное число, потому что их бесконечное множество. Но можно определить самое маленькое натуральное составное число — это 4.

Чтобы построить ряд простых чисел, необходимо совершить отбор из всех натуральных чисел с учетом их определения, то есть нужно действовать методом от противного. Необходимо рассмотреть каждое из натуральных положительных чисел на предмет того, имеет ли оно более двух делителей. Давайте постараемся построить ряд (последовательность), который составляют простые числа. Список начинается с двух, следующим идет три, поскольку оно делится только на себя и на единицу. Рассмотрим число четыре. Имеет ли оно делители, кроме четырех и единицы? Да, это число 2. Значит, четыре не является простым числом. Пять также является простым (оно, кроме 1 и 5, ни на какое другое число не делится), а вот шесть – делится. И вообще, если проследить за всеми четными числами, то можно заметить, что кроме “двух”, ни одно из них не является простым. Отсюда сделаем вывод, что четные числа, кроме двух, не являются простыми. Еще одно открытие: все числа, делящиеся на три, кроме самой тройки, будь то четные или нечетные, также не являются простыми (6, 9, 12, 15, 18, 21, 24, 27 и т.д.). То же самое касается и чисел, которые делятся на пять и на семь. Все их множество также не является простым. Давайте подведем итоги. Итак, к простым однозначным числам относятся все нечетные числа, кроме единицы и девятки, а из четных – только “два”. Сами десятки (10, 20. 40 и др.) не являются простыми. Двузначные, трехзначные и т. д. простые числа можно определить, исходя из вышеизложенных принципов: если они не имеют других делителей, кроме их самих и единицы.

Названия специальных простых чисел

Те числа, которые были найдены благодаря алгоритмам, созданным теми или иными учеными, и прошли тест простоты, называются специальными. Вот некоторые из них:

Простота этих чисел, названных в честь вышеперечисленных ученых, устанавливается с использованием следующих тестов:

4. Биллхарта – Лемера – Селфриджа и др.

Современная наука не останавливается на достигнутом, и, вероятно, в ближайшем будущем мир узнает имена тех, кто смог получить приз в 250.000 долларов, найдя наибольшее простое число.

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а , то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Определение 1

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Определение 2

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Определение 3

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Определение 4

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Определение 5

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Теорема 1

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство 1

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · (q 1 · q) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · (q 1 · q) . Видно, что b 1 – это делитель для числа а. Неравенство 1 не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а.

Читайте также:  Подарок работнику: что со страховыми взносами, НДФЛ и НДС

Теорема 2

Простых чисел бесконечно много.

Доказательство 2

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Рассмотрим пошагово.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Простые и составные числа – определения и примеры

Понятия простые числа и составные числа относятся к , которые больше единицы. Такие целые числа, в зависимости от количества их положительных делителей, подразделяются на простые и составные числа. Таким образом, чтобы понять определения простых и составных чисел , нужно хорошо представлять себе, что такое делители и кратные .

Определение.

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и 1 .

Определение.

Составные числа – это целые числа, большие единицы, которое имеют, по крайней мере, три положительных делителя.

Отдельно заметим, что число 1 не относится ни к простым, ни к составным числам. Единица имеет только один положительный делитель, которым является само число 1 . Этим число 1 отличается от всех остальных целых положительных чисел, которые имеют не менее двух положительных делителей.

Учитывая, что целые положительные числа – это , и что единица имеет только один положительный делитель, можно привести другие формулировки озвученных определений простых и составных чисел.

Определение.

Простыми числами называют натуральные числа, которые имеют только два положительных делителя.

Определение.

Составными числами называют натуральные числа, имеющие более двух положительных делителей.

Отметим, что каждое целое положительное число, большее единицы, есть либо простое, либо составное число. Иными словами, не существует ни одного такого целого числа, которое не являлось бы ни простым, ни составным. Это следует из свойства делимости , которое гласит, что числа 1 и a всегда являются делителями любого целого числа a .

Исходя из информации предыдущего абзаца, можно дать следующее определение составных чисел.

Определение.

Натуральные числа, которые не являются простыми, называются составными .

Приведем примеры простых и составных чисел .

В качестве примеров составных чисел приведем 6 , 63 , 121 и 6 697 . Это утверждение тоже нуждается в пояснении. Число 6 имеет кроме положительных делителей 1 и 6 еще и делители 2 и 3 , так как 6=2·3 , поэтому 6 – действительно составное число. Положительными делителями 63 являются числа 1 , 3 , 7 , 9 , 21 и 63 . Число 121 равно произведению 11·11 , поэтому его положительными делителями являются 1 , 11 и 121 . А число 6 697 составное, так как его положительными делителями кроме 1 и 6 697 являются еще и числа 37 и 181 .

В заключение этого пункта хочется еще обратить внимание на то, что простые числа и взаимно простые числа – это далеко ни одно и то же.

Чётные и нечётные числа

Чётным называется число, которое делится без остатка на 2. Например, число 20 является четным, поскольку оно делится без остатка на 2:

20 : 2 = 10

Нечётным называется число, если при его делении на 2, остаётся остаток 1. Например число 21 является нечетным, поскольку после его деления на 2 остается остаток 1:

21 : 2 = 10 (1 в остатке)

Как распознать чётное число от нечетного, не выполняя деления на 2? Очень просто. Из однозначных чисел чётными являются числа 0, 2, 4, 6, 8, а нечетными являются 1, 3, 5, 7, 9. Если число оканчивается чётной цифрой, то это число является чётным. Если число оканчивается нечетной цифрой, то это число является нечетным.

Например, число 308 чётно, поскольку оно оканчивается чётной цифрой. Число 1024 тоже четно, поскольку оканчивается четной цифрой.

А числа 305 и 1027 являются нечётными, поскольку они оканчиваются нечётными цифрами.


Нахождение делителей числа

В начале данного урока было сказано, что делителем называется число, на которое другое число делится без остатка.

Например, число 2 является делителем числа 6, поскольку число 6 можно без остатка разделить на 2

6 : 2 = 3

Ещё делителем числа 6 является число 3

6 : 3 = 2

Ещё делителем числа 6 является число 1

6 : 1 = 6

Наконец, делителем числа 6 является само это число

6 : 6 = 1

Перечислим все делители числа 6

1, 2, 3, 6

Иногда возникает необходимость найти все делители какого-нибудь числа. Чтобы понять, как это делается, рассмотрим несколько примеров.

Что такое составные числа?

В нумерологии, кроме основных чисел от 1 до 9, выделяются и составные числа, например 10, и управляющие числа 11 и 22, которые обладают своей собственной характеристикой.

То есть в роли составных чисел они не являются простым дополнением натурального числа. Они обладают своим собственным значением.

Все числа равны между собой. Каждое число сочетается с любым другим. Все числа по-своему ведут к таким качествам, как сострадание, любовь, хладнокровие, сплоченность, одобрение.

Каждое число кардинально отличается от всех остальных и в то же время находится в гармонии с каждым из них.

Способность хорошо сочетаться с другими числами, сохраняя свою индивидуальность, называется настройкой возможности завершенности

Следует осознать, что простые числа означают то, чем вы являетесь в глазах окружающих, в то время как составные показывают скрытые влияния, которые играют роль по ту сторону сцены и некоторым загадочным способом предсказывают будущее.

Когда мы проходим базовые числа от 1 до 9, начинается то, что называется символикой чисел, это продолжается до тех пор, пока не взято 5 раз по 9, то есть 45.

В этой точке входит в действие мистическое число 7 и, добавленное к 45, дает 52, что означает 52 недели в году. 52 7 даст 364, то есть число дней обычного года.

Задачи на простые и составные числа

1. Известно, что р, р + 10, р + 14 – простые числа. Найдите число р.

  1. 2. Докажите, что число
  2. а) 210 + 512;
  3. б) n4 + 64;
  4. в) 4545 + 5454;
  5. является составным.

3. Найдите все простые р для которых число р2 + 14 так же будет простым числом.

Читайте также:  Код вычета 327 в декларации 3 ндфл — как поставить, что вписать в код 328

4. Докажите, что уравнение х2 + х + 1 = р·у имеет решение в целых числах (х, у) для бесконечного числа простых р.

5. Введём обозначение для суммы первых n простых чисел через Sn:

Sn = 2 + 3 + 5 + . . . + рn.

Докажите, что между числами Sn и Sn+1 всегда существует число, являющееся полным квадратом.

На этом уроке мы познакомимся с двумя видами чисел. Они будут различаться количеством делителей.

Также узнаем, как можно разложить составное число на простые числа, изучим основную теорему арифметики и увидим решето Эратосфена.

Давайте же начнём!

  • Если мы попытаемся разделить число 11 на какие-нибудь числа без остатка, то у нас получится это сделать, только если мы будем делить на 1 или на 11.
  • Получается, что число 11 имеет только два делителя: 1 и 11.
  • Если мы поступим так же с числами 9 и 18, то узнаем, что у числа 9 три делителя: 1, 3 и 9, а число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18

Первое число, у которого всего два делителя, — это простое число. А вот такие числа, как 9 и 18, называют составными числами.

Натуральное число простое, если оно имеет делителями только единицу и само себя.

Если натуральное число имеет больше двух делителей, то оно называется составным.

Есть число, которое не относится ни к первым, ни ко вторым. Это число 1. Оно имеет всего один делитель — само это число.

Таким образом, числа, которые мы используем при счете, в итоге можно разделить на три разные группы по количеству делителей:

  • простые имеют всегда пару делителей: единицу и само себя, например: 2, 3, 5, 7, 11, 17, 19, 23 и т.д.
  • составные имеют всегда три или больше делителей, например: 4, 6, 8,10,15, 22 и т.д.
  • единица (1) со своим единственным делителем

Пример 1

Даны числа: 1, 7, 10, 12, 13, 24. Найдите все делители для каждого из чисел. Выпишите числа, имеющие:

  1. А) один делитель
  2. Б) два делителя
  3. В) больше двух делителей
  4. Решение:
  5. Число 1 имеет один делитель: 1
  6. Число 7 имеет два делителя: 1, 7
  7. Число 10 имеет четыре делителя: 1, 2, 5, 10
  8. Число 12 имеет шесть делителей: 1, 2, 3, 4, 6, 12
  9. Число 13 имеет два делителя: 1, 13
  10. Число 24 имеет восемь делителей: 1, 2, 3, 4, 6, 8, 12, 24
  11. Ответ:
  12. А) один делитель- 1
  13. Б) два делителя- 7, 13
  14. В) больше двух делителей- 10, 12, 24
  15. Таким образом, числа 7 и 13 являются простыми, потому что имеют по два делителя.
  16. Числа 10, 12, 24 являются составными, потому что имеют больше двух делителей.
  17. Пример 2

Даны числа: 2, 4, 17, 21, 28, 30, 42, 55, 127. Какие из них простые, а какие составные?

  • Найдите все делители для составных чисел.
  • Решение:
  • Простые: 2, 17, 127
  • Составные: 4, 21, 28, 30, 42, 55
  • Число 4 имеет три делителя: 1, 2, 4
  • Число 21 имеет четыре делителя: 1, 3, 7, 21
  • Число 28 имеет шесть делителей: 1, 2, 4, 7, 14, 28
  • Число 30 имеет восемь делителей: 1, 2, 3, 5, 6, 10, 15, 30
  • Число 42 имеет восемь делителей: 1, 2, 3, 6, 7, 14, 21, 42
  • Число 55 имеет четыре делителя: 1, 5, 11, 55

Простое число – это положительное натуральное число, которое имеет только два положительных натуральных делителя: единицу и самого себя.

Противоположностью простых чисел являются составные числа. Составное число – это положительное натуральное число, которое имеет, по крайней мере, один положительный делитель, отличный от одного или самого себя.

Взаимно простые числа – числа A и B, не имеющие никаких общих делителей, за исключением единицы.

  1. Число 2 является простым числом, т.к.

    имеет всего два делителя – 1 и 2:

  2. Число 15 не является простым числом, потому имеет делители – 1, 3, 5, 15:
    • 15/1 = 15
    • 15/3 = 5
    • 15/5 = 3
    • 15/15 = 1
  3. Число 13 является простым числом, т.к.

    имеет только два делителя – 1 и 13:

  4. Числа 2 и 5 являются взаимно простыми, т.к. имеют только один общий делитель – число 1:
    1. 2/1 = 2
    2. 2/2 = 1
    3. 5/1 = 5
    4. 5/5 = 1

Простое число – это положительное целое число больше 1, которое можно без остатка поделить только на 1 и на само себя. Чтобы определить является ли число простым, необходимо его поделить на 2, затем на 3, 4, … n, до тех пор, пока n не станет равным самому числу. Если это число разделится без остатка только на само себя, то оно является простым.

Составные числа — понятие и определение

Такие числа, которые используют при счете объектов и предметов, называют натуральными.

Натуральные числа бывают простыми и составными.

Если у числа есть только два делителя — единица и само число — то его называют простым. Самое маленькое простое число — это 2.

Например, к простым относят также 3, 5 и 7.

У 3 есть только два делителя: 1 и 3.

Составные числа являются натуральными и имеют больше двух делителей.

Например, 125 делится на 1, 5, 25, 125. Это составное число.

Единица не относится ни к простым, ни к составным натуральным числам.

Делителем числа называют такое число, при делении на которое полученный результат является целым (не имеет остатка).

Нельзя назвать самое большое составное число, потому что их бесконечное множество. Но можно определить самое маленькое натуральное составное число — это 4.

Математика Эратосфена. Простые и составные числа

Решето Эратосфена — это специальный алгоритм, который позволяет определять все простые числа до целого заданного натурального числа N. Само название методики содержит основной принцип ее функционирования. «Решето» представляет собой «фильтр», пропускающий все ненужные числа, кроме простых.

Так, при составлении «решета» – таблицы, необходимо учитывать, что для выполнения задачи важна проверка чисел в последовательном порядке – начиная с двух и до 100, 1000 и т.д. Если у числа невозможно разложить на простые множители и делители отсутствуют – оно фиксируется в таблице, а если оно является натуральным составным числом, значит необходимо его исключить.

Составляя таблицу простых чисел в привычном порядке приходится поэтапно рассматривать каждую цифру. Необходимо начать с 2 – у нее можно выделить два делителя (1 и 2), поэтому оно является простым числом и может быть занесено в таблицу. Число 2, также, заносим в таблицу. Число 4 можно разложить на простые множители 2 и 2, а значит, в таблице его быть не должно, поскольку оно является составным. А 5 имеет всего два делителя, соответственно, оно фиксируется в таблице. Так, поочередно рассматривается каждое число, вплоть до 100, 1000, 10000 и т, д.

Данная методика является понятной, но весьма долгой и неудобной. Именно решето Эратосфена принято считать оптимальным алгоритмом. Далее, на примере приведенных таблиц будет рассмотрен сам алгоритм.

Найдем все простые натуральные числа от 2 до 50. Для начала, в таблицу заносятся все числа, которые располагаются в указанном числовом ряду

2 3 4 5 6 7 8 9 10
11 12 12 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *